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Understanding how information about threats in the environment is shared
and transmitted between individuals is crucial for explaining adaptive,
survival-related behaviour in humans and other animals, and for developing
treatments for phobias and other anxiety disorders. Research across
species has shown that observing a conspecific’s, a ‘demonstrator’s,’ threat
responses causes strong and persistent threat memories in the ‘observer’.
Here, we examined if physiological synchrony between demonstrator and
observer can serve to predict the strength of observationally acquired con-
ditioned responses. We measured synchrony between demonstrators’ and
observers’ phasic electrodermal signals during learning, which directly
reflects autonomic nervous system activity. Prior interpersonal synchrony
predicted the strength of the observer’s later skin conductance responses
to threat predicting stimuli, in the absence of the demonstrator. Dynamic
coupling between an observer’s and a demonstrator’s autonomic nervous
system activity may reflect experience sharing processes facilitating the
formation of observational threat associations.
In social species, like humans, knowledge about threats and dangers is often
acquired through various forms of social transmission, for example, through
observation. Research across species has shown that observing a conspecific’s—
a ‘demonstrator’s—threat responses to a previously neutral stimulus can cause
strong and persistent threat memories in the ‘observer’ [1–14]. Such memories
are expressed by heightened autonomic nervous system activity in the observer
when later facing that stimulus alone. Observational threat learning is efficient,
andminimizes risks to the individual arising fromdirectly interactingwith poten-
tial dangers [15]. Understanding how threat information in the environment is
observationally acquired is central to explaining adaptive, aswell asmaladaptive,
survival-related behaviour in humans and other animals.

Synchrony is a pervasive natural phenomenon and occurs when two systems
become coupled so that their trajectories develop temporal interdependence
[16,17]. It is also a fundamental feature of interpersonal coordination and social
cognition [18–25]. For example, in humans, synchrony has been observed over
multiple levels of analysis including intrapersonal limb coordination [17], inter-
personal eye movements during communication [26], shared attention [27] and
postural sway in dyadic coordination tasks [28]. Importantly, synchrony has
been related to interpersonal cohesion and cooperative outcomes [21,29,30].
Related individuals will show greater synchrony in their heart rates compared
with non-related individuals during hazardous social rituals [29] and dyads
who show higher degrees of synchrony will show greater team cohesion [30].
Recent advances in the cognitive neurosciences have led to the discovery of coup-
ling in BOLD fMRI signals in several contexts [19,31–33]. For example, neural
coupling between individuals has been found to predict successful verbal com-
munication, such that the more a listener’s brain activity correlated with the
speaker’s, the better comprehension the listener would report [32]. Despite
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Figure 1. Overview of experiment. (a) Learning phase. Demonstrator watched two images, one that terminated with an uncomfortable electrical shock during 4 of 6
presentations (CS+) and another that never terminated with a shock (CS−). Each CS presentation lasted 6 s and inter-trial interval (ITI) varied between 10 and 16 s.
Valence (CS+/−) of the first image presented was randomly varied. While the demonstrator watched the CS presentations and received shocks, the Observer
watched both the demonstrator and the CS’s. The Observer was instructed to learn the shock contingency. The observer received no shocks during the learning
phase. Electrodermal activity was continuously recorded from both the demonstrator and observer. (b) Testing phase. Immediately following the learning phase, the
Observer was repeatedly shown both CS’s again, instructed that they would receive shocks to the same image as the demonstrator had received shocks to. Impor-
tantly, only the 7th, final presentation of the CS+ terminated with shock, to not interfere with the measurement of the vicariously acquired threat response. Greater
SCR to the CS+ compared to the CS− in the Observer, in this phase, indicates successful threat learning. (c) Expression of learning in the testing phase. Average
trial-by-trial data from testing phase showing average skin conductance responses to the CS+ (dark circles) and to the CS− (light circles) for the Observer. Error bars
are 95% confidence intervals. (Online version in colour.)
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considerable evidence for the role of synchrony in a diverse set
of intra- and interpersonal processes, its role, if any, in social
learning is not understood.

For observational learning to occur, the demonstrator’s
reactions to the threatening stimulus must function as uncondi-
tioned stimulus for the observer. It is possible that sharing
affective states between demonstrator and observer heightens
the observer’s sensitivity to the demonstrator, in that way pro-
moting learning. While this has long been hypothesized in
variousways [4,11,34–37], there is nodirect evidence of affective
experience sharing in human threat learning. Here, we attemp-
ted to remedy this and provide evidence that synchronous
patterns of arousal between observers and demonstrators
influence observational threat learning.

Past experiments on observational threat learning in humans
have all employed artificial situations involving confederate
demonstrators, either in live settings [4–6,36,37], or more
recently, displayed via video recording [9,11,13,38], and this
may be one reason for the lack of evidence concerning syn-
chrony and observational threat learning. Hence, to investigate
synchrony, we adapted an existing, standard video-based para-
digm [38] to a more naturalistic situation. In our paradigm, two
naive participants took turns being demonstrator and observer,
the demonstrator undergoing a direct conditioning procedure
and the observer learning from the demonstrator’s reactions
(see figure 1, Methods). The experiment consisted of four
blocks, each consisting of two phases, and participants switched
roles halfway through (see Methods). The first phase was a
learning phase where the observer watched the demonstrator
receive probabilistic shocks to one of two visual images serving
as conditioned stimulus images (CS+), and never to the other
(CS−). The learning phase was followed by a testing phase
where both CSswere repeatedly presented again to the observer
under threat of shock. To allow for the assessment of socially
acquired threat responses in the absence of direct personal
experience of the CS− outcome contingency, no shocks were
administered to the observer following CS+ presentations
during the testing phase, except following the final presentation
(see Methods). Both participants’ electrodermal activity was
continuously recorded throughout the experiment allowing
for synchrony to be calculated during the learning phase.
Threat learning was measured as CS differentiation—stronger
skin conductance responses to CS+ compared to CS− images
in the testing phase.
1. Methods
(a) Participants
We recruited a total of 138 participants who formed 69 unique
demonstrator–observer dyads. Sample size was determined
using simulations based on observations in an earlier pilot
study (see electronic supplementary material for details).
Dyads were matched by gender (24 male, 45 female). Average
age was 25 years (s.d. = 4.1). Participants were recruited from
the student population at Karolinska Institutet and the surround-
ing local community. We ensured that participants did not
already know each other prior to participating in the experiment.
Participants were screened from having previously partaken in
conditioning experiments. Participants were given two cinema
ticket vouchers as thanks for their participation. The
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experimental procedure was approved by the local ethics
committee (2015/2115-32).

(b) Procedure
The experiment was divided into four blocks and followed
established protocols for video-based observational learning
paradigms [38]. Full details of the procedure are available in
electronic supplementary material, methods.

Each block consisted of a learning phase and was followed
immediately by a testing phase. In the learning phase, the observer
attempted to learn the conditioned stimuli (CS) contingencies by
watching the demonstrator’s reactions to the CS images. The learn-
ing phase consisted of six alternating presentations of each CS+
and CS− image (see figure 1). Each CS was shown for 6 s. There
was a variable length 10–16 s inter-trial interval between each
CS presentation. Four of the six CS+ presentations, randomly
determined, terminated with a shock to the demonstrator. Impor-
tantly, the observer received no shocks during this phase nor any
instructions about which image was the CS+ (shock predicting)
and which was the CS− (safe). The only way to learn this
contingency for the observer was through observation.

Following the learning phase, on-screen instructions informed
the observer that they would view the same two CS images again
and now receive shocks to the same image that they had observed
the demonstrator previously receive shocks to [9]. During this
phase, the demonstrator was instructed to close their eyes and a
screen was placed between demonstrator and observer occluding
the observers’ view of the demonstrator (electronic supplementary
material, figures S1 and S2). These steps were taken to ensure
that the observer would not be able to pick up any cues during
the testing phase about the valence of the CS images. Hence, any
expression of heightened electrodermal activity to the CS+ image
compared to the CS− image would only reflect associations obser-
vationally formed during the previous learning phase. During the
testing phase, each CS image was shown seven times. Unbe-
knownst to the observer, only the final CS+ presentation would
terminate with a shock. This final shock was given to ensure that
the observers would consider the threat of shock credible also in
the next block. The whole procedure was repeated the following
block, albeit with novel CS images ensuring no carry-over effects.

After the second block had completed, the observer was asked
to rate the demonstrator on four metrics: on how much pain the
demonstrator seemed to be in, howmuch compassion the observer
felt for the demonstrator, the extent towhich the demonstratorwas
a good model and helped them learning and to how similar to
them the demonstrator appeared to be. All ratings were completed
using a 16cm visual-analogue scale. The experiment then contin-
ued for two more blocks with the participants in reversed roles,
meaning the participant who had been observer now became
demonstrator and vice versa. Participants were unaware that this
role reversal would occur. The role reversal entails that half the
participants begin the experiment with two blocks as observer
while the other half of the participants become observers only
after having been demonstrators first for two blocks. In the results,
we show that there are no effects of initial role assignment on the
findings presented in this paper.

Once all four blocks had completed, the current observer rated
the demonstrator on the same four metrics as introduced above.
Both participant then completed an interpersonal reactivity
index (IRI) [39]. Finally, participants were thanked and debriefed.

(c) Cross-recurrence quantification analysis
To assess synchrony, we used cross-recurrence quantification
analysis (CRQA), the bivariate extension of recurrence quantifi-
cation analysis. Recurrence analysis is based on the analysis of
recurrence plots [40]. In a recurrence plot (see figure 2), each dot
marks a point of recurrence in a reconstructed phase space of the
signal. The phase space is constructed using time-delay embed-
ding. Points are considered to be recurrent if they are within
some radius of one another in the resulting high dimensional
phase space. Hence, three parameters need to be set to compute
a recurrence plot from a time series: time delay, number of embed-
ding dimensions and radius (see [40] for a rigorous treatment).
CRQA works analogously but where the patterns of revisitation
are compared between two signals [22]. CRQA yields cross-recur-
rence plots, analogous to regular recurrence plots.

We used the crqa package [41] implemented in the R statistical
language to construct the cross-recurrence plots. Each cross-recur-
rence plot was based on the phasic skin conductance signal from
the demonstrator and observer from each learning phase. The sig-
nals were down-sampled to 8 Hz and then z-scored. Optimal
parameters for the CRQA analysis (delay, embedding dimensions
and radius) were determined individually for each pair of signals
so that they would yield an average recurrence rate between 2%
and 4% [29,40]. These parameters were derived using routines
from the crqa package and was done prior to and blind from any
subsequent analyses. From each resulting cross-recurrence plot
various metrics can be computed that capture the dynamics of
the system being analysed [22,40,41]. Here, we computed four
metrics: DETerminism, LAMinarity, maximum line (maxL) and
relative Entropy (rENTR). DET represents the relative amount of
recurrent points forming diagonal segments, as such DET
measures the predictability of the time series as they evolve over
time. LAM is analogous to DET but instead represents recurrent
points forming vertical line segments, which can be thought of
capturing relative stability in the system. maxL is length of the
longest diagonal sequence of recurrent points, capturing the
maximal strength of coupling between the two time series.
rENTR calculates the Shannon entropy of the histogram of the
deterministic (diagonal) sequences and indexes the complexity of
the relationship between the time series.

(d) Analysis
All analyses were performed in the R statistical language using the
brms package [42]. We analysed the data using Bayesian multi-
level regression including varying intercepts and slopes by partici-
pant and between intercept and slope correlations. All categorical
regressors were deviation coded (0.5/−0.5) and all continuous
regressors were standardized. Full details are given in the elec-
tronic supplementary material, Methods and regression tables
for all analyses are presented in the electronic supplementary
material, Results.
2. Results
We first evaluated the threat learning procedure and con-
firmed that observers readily acquired threat information
from demonstrators. We tested 69 same-sex dyads and ana-
lysed observers’ skin conductance responses to the onset of
the CS images. We included a factor coding for if a trial con-
sisted of a CS+ or a CS− presentation (CS). Additionally, since
our experiment consisted of four blocks and participants
were observers either in the first two or final two blocks of
the experiment, we included variables coding for these effects
in the same regression model (Block and Role, respectively).
This allowed us to test if learning was equally effective for
each observer regardless if this was their first or second
time observing the demonstrator and if there was any differ-
ence in learning depending on the role reversal. All variables
were deviation coded (see Methods).

We found a robust learned threat response indicating CS
differentiation (Bayesian multilevel regression; b = 0.15, SE =
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Figure 2. (a) Example of one observer’s and demonstrator’s phasic skin conductance time series from a single learning phase, z-scored to facilitate comparison. No
testing phase data shown. (b) The resulting recurrence plot following cross-recurrence quantification analysis (CRQA) on the time series in (a). From each recurrence plot,
four standard metrics capturing synchrony were computed; ratio of points in diagonal lines to all points (determinism, DET), maximal diagonal line length (maxL),
entropy of diagonal line length distribution (rENTR) and the ratio of points in vertical lines to all points (laminarity, LAM). Resulting metrics computed from example
series displayed in (a). Both panels (a,b) are displayed for illustrative purposes depicting only one representative time series and its resulting cross-recurrence plot.
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0.016, CrI (95% credible interval) = [0.12, 0.19], BF10 (Bayes
factor) >106, see figure 1). Importantly, we found no interaction
between CS status and Block (b = 0.030, SE = 0.019, CrI =
[−0.007, 0.067], BF10 = 1.34) and no interaction between CS
status and Role (b = 0.036, SE = 0.028, CrI = [−0.018, 0.090],
BF10 = 1.26). Together, this indicates that participants learned
effectively during all stages of the experiment andwe conclude
from this that our procedure translates standard video-based
observational learning paradigms [9,38] into the more
realistic situation, involving two live participants, tested here.

(a) Synchrony predicts observational threat responses
Next, we tested the main hypothesis: that demonstrator–
observer synchrony of physiological arousal during the
learning phase would predict the strength of the observer’s
threat responses in the test phase. To quantify synchrony, we
performed a cross-recurrence quantification analysis (CRQA;
see figure 2, Methods). CRQA quantifies the similarity of two
signals and is suitable for complex non-stationary signals
where nonlinear dyanamics may exist [22,29,41,43]. We first
constructed cross-recurrence plots for each dyad’s phasic skin
conductance time series from the learning phase portion of
each block (see figure 2, for example, cross-recurrence plot).
From these plots, four standard metrics of CRQA were
computed that capture predictability (% DETerminism),
maximum strength of coupling (maxLine) and complexity
(rENTRopy) of the relationship between the time series.

We regressed each of four CRQAmetrics separately on each
observer’s skin conductance responses to each CS image pres-
entation from the corresponding testing phase, together with a
variable indicating CS status. Interactions between the CRQA
metrics and the CS variable indicate support for our hypoth-
esis. We found strongest evidence for a link between DET
and CS differentiation (b = 0.055, SE = 0.013, CrI = [0.029,
0.082], BF10 = 610) and between LAM and CS differentiation
(b = 0.051, SE = 0.014, CrI = [0.025, 0.078], BF10 = 1481);
see figure 3a). We also found weak evidence for maxL (b =
0.037, SE = 0.014, CrI = [0.010, 0.063], BF10 = 9.7) predicting
CS differentiation, but only anecdotal evidence for rENTR
(b = 0.027, SE = 0.012, CrI = [0.003, 0.050], BF10 = 2.8).

While the preceding analyses indicated considerable sup-
port for our hypothesis that interpersonal synchrony during
observational learning predicts later threat responses, it does
not show that this effect is specific to the actual demonstra-
tor–observer dyads from our experiment. To address this
issue, we followed existing recommendations [26,30,43], and
created random permutations of our data by pairing partici-
pants’ across dyad boundaries. These pairings can be
thought of as pseudo-dyads. The results demonstrate that the
predictive effect of the CRQA metrics on threat responses
does not arise between pseudo-dyads and is specific to actual
demonstrator–observer pairings (see electronic supplementary
material, figure 3).
(b) Single component of CRQA metrics captures effect
of synchrony on threat responses

Since the four CRQA metrics were highly correlated in our
sample (r = 0.33 to r = 0.74), we followed prior work and
reduced these measures into a single value using principal
components analysis [30]. The factor loadings resulting
from the analysis and variance explained of each factor are dis-
played in electronic supplementary material, table S5. The
loadings suggested that the first component, which loaded
roughly equally, and positively, on all metrics and captured
63% of the variance, should represent synchrony between
participants best.

In line with this interpretation and our earlier analysis on
the separate metrics, the first component we extracted (PC1),
capturing synchrony, positively predicted CS differentiation
(b = 0.038, SE = 0.009, CrI = [0.021, 0.056], BF10 = 1156), see
figure 3b). The remaining principal components did not
reliably predict CS differentiation (all b < 0.012, all BF10 <
0.60). In the remainder of the paper, we restrict our analyses
to this synchrony component.
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Figure 3. (a) Posterior predictions from regression models predicting CS+ (red, solid line) and CS− (blue, dashed line) responses as a function of each of the four
metrics of synchrony computed via CRQA. (b) Posterior prediction of the observer’s CS+ (red, solid line) and CS− (blue, dashed line) responses during the testing
phase, as a function of synchrony during the learning phase as captured by the first principal component of the CRQA measures. Points represent individual data
points from separate CS presentations. Shaded region indicates 95% posterior predictive interval. (Online version in colour.)
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(c) Stability of synchrony across trials, blocks and
participant roles

Analogously to our evaluation of overall threat learning, we
tested if the predictive effect of synchrony on the observer’s
threat responses differed depending on if the observer started
the experiment in that Role or, instead, as demonstrator and if
it was the first or second Block in that role. It is possible that
additional experience with the experiment might in some
way affect how observers and demonstrators synchronize
and that our effects were only present in parts of the data.
Our analyses indicated that this was not the case. We next
tested if the effect of synchrony (PC1) changed over the
series of consecutive CS image presentations as the partici-
pants’ responses extinguished (cf. figure 1). We found that
the relationship between CS differentiation and synchrony
was stable across all trials in the testing phase. See electronic
supplementary material, Results for details.

(d) Specificity of synchrony as predictor of threat
learning

To rule out non-synchrony based mechanisms explaining
our findings, we identified three measures based on the
observer’s arousal in the learning phase. Each measure
could plausibly capture relevant aspects of the observer’s
learning process. The first measure was the average strength
of the observer’s skin conductance response to the social
unconditioned stimulus (UCS; the demonstrator receiving
shocks) during the learning phase. During direct condition-
ing it is generally accepted that the strength of the UCS
predicts the strength of later conditioned responses [44–47],
and the social UCS is considered to play a similar role in
observational learning [5,6]. We therefore hypothesized that
the observer’s reactions to the social UCS might be indicative
of its perceived strength. As such the UCS response might be
capturing similar empathic processes as the synchrony com-
ponent. The second measure was the average difference of
the observer’s responses to the CS+ over the CS− during
the learning phase. While the observers were under no
direct threat, it is possible that some observers began to
develop responses to the CS+ anticipating the future shocks
to the demonstrators. It is, therefore, possible that this early
CS differentiation during the learning phase could be the
source of the observed synchrony in that phase and account
for the effect of synchrony we observed. Third, we included a
time-lagged correlation between the demonstrators’ and
observers’ skin conductance time series during the learning
phase. Correlations capture a direct linear relationship
between the signals and, unlike the previous two measures,
take the whole time series into account.

The three measures outlined above exhibited low corre-
lations with each other (r = 0.14 to r = 0.20), so we jointly
regressed each of them and the synchrony component ident-
ified earlier together with their interactions with CS status on
observer’s skin conductance responses from the testing
phase. We found that while observers’ average UCS
responses, during the learning phase, were positively related
to the strength of their average skin conductance responses,
during the testing phase, (b = 0.045, SE = 0.012, CrI = [0.021,
0.069], BF10 = 154), they did not interact with CS status (b =
0.021, SE = 0.017, CrI = [−0.012, 0.054], BF10 = 0.72). Similarly,
neither learning phase CS differentiation (b =−0.014, SE =
0.016, CrI = [−0.044, 0.019], BF10 = 0.47) nor lagged corre-
lations (b = 0.007, SE = 0.014, CrI = [−0.019, 0.033], BF10 =
0.31) interacted with CS status. Importantly, the synchrony
component continued to robustly predict CS differentiation
in the testing phase in this model (b = 0.034, SE = 0.010,
CrI = [0.015, 0.054], BF10 = 71), even when accounting for
these additional measures capturing other aspects of the
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observer’s skin conductance signals during the learning
phase. Finally, we found no evidence that any of the three
measures moderated the effect of synchrony on CS differen-
tiation (all b < 0.011, all BF10 < 0.35).

Together these analyses show that synchrony is a specific
predictor of observational threat learning and that the
findings are robust to several plausible alternative predictors
also derived from electrodermal activity during the learning
phase.
/journal/rspb
Proc.R.Soc.B
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(e) Self-reported empathy does not account for threat
learning

Next, we considered if individual differences in self-reported
trait empathy (see electronic supplementary material, table
S11 for descriptive statistics), as measured by the four sub-
scales of the interpersonal reactivity index [39], predicted
observational threat learning and if this could explain the
effects of synchrony. We regressed the four subscales together
with CS status and the synchrony component. We found no
interactions between any of the subscales and CS status nor
with the synchrony component (all b < 0.01, all BF10 < 0.43,
see electronic supplementary material, table S12).

Similarly, all observers rated their perceptions of the demon-
strator: howmuchpain the demonstrator appeared to be in, their
quality as a learningmodel, howmuch compassion the observer
felt for the demonstrator and how similar to the observer the
demonstrator appeared to be. Again none of these measures
interacted with CS status or with the synchrony component
(all b < 0.029, all BF10 < 1.43, see electronic supplementary
material, table S13).

These results suggest the momentary physiological coup-
ling between observers and demonstrators occurs beyond
participants’ introspective abilities and that synchrony might
constitute a more fundamental feature of empathic learning
than captured by trait scales.
3. Discussion
We investigated if spontaneous synchrony between an obser-
ver’s and a demonstrator’s arousal states during observational
threat learning predicted the strength of the observer’s con-
ditioned responses in a later testing phase. We found that the
first principal component assessed from four common metrics
of synchrony, calculated using cross-recurrence quantification
analysis (CRQA), robustly predicted conditioned responses.
Indeed, our findings suggested that at low levels of observer–
demonstrator synchrony almost no differentiation in responses
to threatening versus safe stimuli was exhibited (figure 3b).
Together, our findings suggest a critical andpreviously undocu-
mented facilitating role of synchrony in observational threat
learning. We discuss the interpretation and implications of
our findings below.

(a) Synchrony and conditioned responses
Synchrony, as measured through CRQA, reflects similarity
in the electrodermal activity trajectories of the observer
and demonstrator during the learning phase. We analysed
four common used metrics derived using the cross-recur-
rence plots from each learning phase recorded in our
experiment (figure 2). These metrics capture salient patterns
in how the patterns of similarity between observers and
demonstrators evolve. We found particularly strong evi-
dence for determinism (DET) and laminarity (LAM) as
predictors of later conditioned responses. Determinism
implies a stronger coupling between the trajectories of the
two signals, as indicated by a larger proportion of the recur-
rent time points form diagonal lines in the cross-recurrence
plot. Laminarity suggests sustained, smooth periods in the
signal’s mutual evolution, as indicated by vertical segments
in the cross-recurrence plots. Across all our analyses, the
more synchronized demonstrators and observers were in
their electrodermal activity during the observational learn-
ing phase, the stronger the observer’s CS differentiation
was during the testing phase.

How should synchrony be interpreted beyond the
similarity of the physical properties of the two electrodermal
signals? In this study, we argue that synchrony likely reflected
the observer mirroring the demonstrator’s autonomic nervous
system trajectories as the demonstrator experienced the associ-
ations between the CS images and shocks. Consistent with
previous suggestions [4,11,34–37,48], this kind of experience
sharing facilitated the observer’s learning of the CS–UCS con-
tingencies even in the absence of direct experience with the
shocks. The current work advances previous indirect evidence
for the experience sharing hypothesis of social learning. For
example, past research has found that individuals high in
psychopathic traits exhibited impaired conditioned responses
to a demonstrator getting shocks compared to normal controls
[37] and that facial mimicry in response to watching a demon-
strator getting shocks reflected experience sharing [36]. To the
best of our knowledge, the results reported here represent the
first direct experimental evidence that coupling of autonomic
nervous system trajectories—indicative of sharing of affective
sates—play a role in a learning context.

In the current study, we have a direct measure of two indi-
vidual’s autonomic nervous system activity. A central question
for futurework is how synchrony arises in the brain and how it
interacts with neural systems known to be involved in threat
learning. It might be possible to use hyperscanning techniques
in humans using EEG or fMRI [31,49], to address this question
using the experimental paradigm established here. Another
promising method would be to begin with investigating if
similar synchrony can be found in rodent models, where
neural recordings of sub-cortical structures implicated in
arousal are more readily available.
(b) Empathic experience sharing
Behavioural and neural synchrony has been linked to mirror
neurons responsible for representing the actions and inten-
tions of social partners [18–20,50], and several accounts
have attempted to extend these mechanisms to cover
empathic responses [20,48,50,51]. It has long been hypoth-
esized that sharing another person’s autonomic nervous
system state is the physiological substrate of empathy
[1,52,53]. Some contemporary classifications of empathy con-
sider ‘experience sharing’ [54] or ‘empathic distress’ [55] as
facets of a broader empathy concept. Individual arousal
levels from viewing another person in pain, as indexed by
electrodermal activity, have been shown to correlate with
later costly helping, which provides indirect evidence for a
link between empathy and matches in arousal states [56].
Other research has reported that empathic accuracy is
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greatest during periods of synchronized physiology [53] and
more recently that empathic accuracy moderates synchrony
in a pain task [57]. In humans, the anterior insula and the
anterior cingulate cortex are part of a network responding
to observational threat learning [13], and activity in these
areas is known to correlate with empathy and emotion shar-
ing in humans [55,58]. In rodents, brain regions homologous
to those supporting empathy and emotion sharing in humans
have been shown to be necessary for successful observational
threat learning [34,35,59]. In sum, it possible, although not
conclusive, that the experience sharing in our task also
reflects empathic sharing of states between observers and
demonstrators, although careful experimentation will be
required to establish if synchrony during observational
threat learning is specific to such processes or not.

Facets of empathy involving actively taking another per-
son’s perspective or reflecting mentalizing traits have also
been found to facilitate observational threat learning [11,60].
For example, one study found that instructing observers to
take the perspective of the demonstrator increased con-
ditioned responses for observers who were also high in trait
empathy [11]. This appraisal instruction engages mentalizing
aspects of empathy that involve making explicit inferences
about a partner’s internal states [54,61]. In the results
reported here, we found no relation between trait empathy,
as captured by the interpersonal reactivity index, and con-
ditioned responses. This suggests that we should interpret
previous links between trait mentalizing empathy and obser-
vational threat learning with some caution, especially given
the large sample size of the present study. There are several
differences in method between the current study and studies
mentioned above, most notably the absence of appraisal
instructions and the use of live versus video-filmed demon-
strators. In this study, trait empathy also didn’t moderate
the relationship between synchrony and CS differentiation.
This is consistent with a recent study on empathy for pain
where empathic accuracy, but not trait empathy, was a
moderator for synchrony [57], even if synchrony was opera-
tionalized differently in that study compared to ours. Our
findings indicate that interpersonal synchrony affects learn-
ing independently of trait empathy and this is consistent
with our interpretation of synchrony reflecting experience
sharing [61] or empathic distress [55].

Similarly, we found no relationship between the obser-
ver’s ratings of the demonstrator, including compassion,
and their conditioned responses in the testing phase. As
with the trait measure, these ratings also didn’t moderate
the effect of synchrony. One explanation for this might
be that these ratings reflect retrospective recollections of
the state observers were in during the observational learn-
ing and therefore are not accurate; by contrast, synchrony
will be a direct state measurement. Alternatively, interper-
sonal synchrony might reflect empathic processes which
are more difficult to introspect on. Further work is necess-
ary to fully understand the contributions of multiple
empathic systems on processing social stimuli during
threat learning.

(c) Role of social UCS
We found that the observers’ responses to the social UCS pre-
dict their general level of arousal during the testing phase,
but not the strength of their later conditioned response.
This was surprising since responses to the social UCS have
typically been taken to index the strength of observer’s
empathic responses to the demonstrator and should translate
into stronger threat memories available for later recall,
analogous to how a stronger UCS works during direct con-
ditioning. In our data, observers who react strongly to
seeing the demonstrator being shocked have higher response
amplitudes to both the CS− and the CS+, perhaps reflecting
an anxious or fear-like state during the testing phase. This
suggests that the direct response to the social UCS might be
less important for the observer’s differential learning than
previously theorized, especially when compared to mirroring
and directly sharing the dynamics of the demonstrator’s
arousal states and might represent an uncharted difference
to direct learning.

(d) Limitations and future directions
Outstanding questions arising from this study concern the
factors that can affect the degree of demonstrator–observer
coupling, and how these can be manipulated, as well as
the role of mediating cognitive processes. Past work has
demonstrated that people tend to synchronize more with
people they are more positively disposed towards [62,63]
or closer to [29]. Similarly, observers learn about threats
better from demonstrators who are similar to them [64].
Hence, an important avenue for future work is to manip-
ulate the relationships between participants, for example
by minimal group induction or by using natural covariates
such as friendship [33], to investigate if and how this affects
synchrony’s role in learning. Another probably important
factor is attention. It is known that observational threat
learning is facilitated by increased attention to the contin-
gencies between CS and UCS [60]. Hence, it is possible
that increased attention to the demonstrator by the observer
increases their interpersonal synchrony. To better under-
stand the conditions under which observer–demonstrator
synchrony emerges, it is important to examine the mediat-
ing role of attention.

Understanding the conditions when synchrony emerges
is important for establishing whether synchrony affects
phenomena related to observational learning, like social buf-
fering and social safety learning [65,66]. In those paradigms
observational learning protects the individual from experien-
cing strong threat responses and provides a safe route
towards extinction of previously learned threat associations.
If synchrony attunes the observer to the demonstrator’s
experiences then it is possible that similarly synchrony will
serve to aid vicarious extinction, which in turn has clinical
relevance as a model for understanding phobias and other
anxiety disorders.
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